A New Method of Region Embedding for Text Classification

نویسندگان

  • Chao Qiao
  • Bo Huang
  • Guocheng Niu
  • Daren Li
  • Daxiang Dong
  • Wei He
  • Dianhai Yu
  • Hua Wu
چکیده

To represent a text as a bag of properly identified “phrases” and use the representation for processing the text is proved to be useful. The key question here is how to identify the phrases and represent them. The traditional method of utilizing n-grams can be regarded as an approximation of the approach. Such a method can suffer from data sparsity, however, particularly when the length of n-gram is large. In this paper, we propose a new method of learning and utilizing task-specific distributed representations of n-grams, referred to as “region embeddings”. Without loss of generality we address text classification. We specifically propose two models for region embeddings. In our models, the representation of a word has two parts, the embedding of the word itself, and a weighting matrix to interact with the local context, referred to as local context unit. The region embeddings are learned and used in the classification task, as parameters of the neural network classifier. Experimental results show that our proposed method outperforms existing methods in text classification on several benchmark datasets. The results also indicate that our method can indeed capture the salient phrasal expressions in the texts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Document Embedding Method for News Classification

Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...

متن کامل

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

Connected Component Based Word Spotting on Persian Handwritten image documents

Word spotting is to make searchable unindexed image documents by locating word/words in a doc-ument image, given a query word. This problem is challenging, mainly due to the large numberof word classes with very small inter-class and substantial intra-class distances. In this paper, asegmentation-based word spotting method is presented for multi-writer Persian handwritten doc-...

متن کامل

A New Method of Region Embedding for Text Classification

To represent a text as a bag of properly identified “phrases” and use the representation for processing the text is proved to be useful. The key question here is how to identify the phrases and represent them. The traditional method of utilizing n-grams can be regarded as an approximation of the approach. Such a method can suffer from data sparsity, however, particularly when the length of n-gr...

متن کامل

Phishing website detection using weighted feature line embedding

The aim of phishing is tracing the users' s private information without their permission by designing a new website which mimics the trusted website. The specialists of information technology do not agree on a unique definition for the discriminative features that characterizes the phishing websites. Therefore, the number of reliable training samples in phishing detection problems is limited. M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018